Keysight Technologies

N1911A/N1912A P-Series Power Meters and N1921A/N1922A Wideband Power Sensors

Data Sheet

LXI Class-C-Compliant Power Meter

A P-Series power meter is a LXI Class-C-compliant instrument, developed using LXI Technology. LXI, an acronym for LAN extension for Instrumentation, is an instrument standard for devices that use the Ethernet (LAN) as their primary communication interface.

Hence, it is an easy-to-use instrument especially with the usage of an integrated Web browser that provides a convenient way to configure theinstrument's functionality.

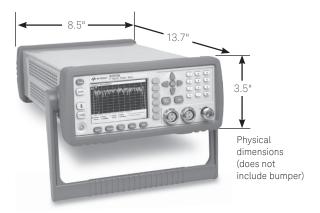
Specification Definitions

There are two types of product specifications:

- Warranted specifications are specifications which are covered by the product warranty and apply over 0 to 55°C unless otherwise noted. Warranted specifications include measurement uncertainty calculated with a 95% confidence.
- Characteristic specifications are specifications that are not warranted. They describe product performance that is useful in the application of the product. These characteristic specifications are shown in italics

Characteristic information is representative of the product. In many cases, it may also be supplemental to a warranted specification. Characteristic specifications are not verified on all units. There are several types of characteristic specifications. These types can be placed in two groups:

One group of characteristic types describes 'attributes' common to all products of a given model or option. Examples of characteristics that describe 'attributes' are product weight, and 50 ohm input Type-N connector. In these


examples product weight is an 'approximate' value and a 50ohm input is 'nominal'. These two terms are most widely used when describing a product's 'attributes'.

The second group describes 'statistically' the aggregate performance of the population of products. These characteristics describe the expected behavior of the population of products. They do not guarantee the performance of any individual product. No measurement uncertainty value is accounted for in the specification. These specifications are referred to as 'typical'.

Conditions

The power meter and sensor will meet its specifications when:

- stored for a minimum of two hours at a stable temperature within the operating temperature range, and turned on for at least 30 minutes
- the power meter and sensor are within their recommended calibration period, and
- used in accordance to the information provided in the User's Guide.

General features	
Number of channels	N1911A P-Series power meter, single channel N1912A P-Series power meter, dual channel
Frequency range	N1921A P-Series wideband power sensor, 50 MHz to 18 GHz N1922A P-Series wideband power sensor, 50 MHz to 40 GHz
Measurements	Average, peak and peak-to-average ratio power measurements are provided with free-run or time-gated definitions. Time parameter measurements of pulse rise time, fall time, pulse width, time-to-positive occurrence and time-to-negative occurrence are also provided.
Sensor compatibility	P-Series power meters are compatible with all Keysight Technologies, Inc. P-Series wideband power sensors, E-Series sensors, 8480 Series sensors and N8480 Series sensors1. Compatibility with the 8480 and E-Series power sensors will be available free-of-charge in firmware release Ax.03.01 and above. Compatibility with N8480 Series power sensors will be available free-of-charge in firmware release A.05.00 and above.

^{1.} Information contained in this document refers to operation with P-Series sensors. For specifications when used with 8480 and E-series sensors (except E9320A range), refer to Lit Number 5965-6382E. For specifications when used with E932XA sensors, refer to Lit Number 5980-1469E.

P-Series Power Meter and Sensor

Key System Specifications and 0	Characteristics2
Maximum sampling rate	100 Msamples/sec, continuous sampling
Video bandwidth	≥ 30 MHz
Single-shot bandwidth	≥ 30 MHz
Rise time and fall time	≤ 13 ns (for frequencies ≥ 500 MHz) ² , see Figure 1
Minimum pulse width	50 ns ³
Overshoot	≤ 5 %²
Average power measurement accuracy	N1921A: \leq ± 0.2 dB or ± 4.5 % ⁴ N1922A: \leq ± 0.3 dB or ± 6.7 %
Dynamic range	-35 dBm to +20 dBm (> 500 MHz) -30 dBm to +20 dBm (50 MHz to 500 MHz)
Maximum capture length	1 second
Maximum pulse repetition rate	10 MHz (based on 10 samples per period)

- 1. See Appendix A on page 9 for measurement uncertainty calculations.
- 2. Specification applies only when the Off video bandwidth is selected.
- 3. The Minimum Pulse Width is the recommended minimum pulse width viewable on the power meter, where power measurements are meaningful and accurate, but not warranted.
- 4. Specification is valid over –15 to +20 dBm, and a frequency range 0.5 to 10 GHz, DUT Max. SWR < 1.27 for the N1921A, and a frequency range 0.5 to 40 GHz, DUT Max. SWR < 1.2 for the N1922A. Averaging set to 32, in Free Run mode.

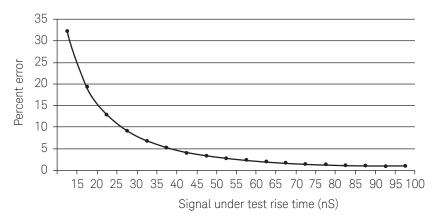


Figure 1. Measured rise time percentage error versus signal under test rise time

Although the rise time specification is \leq 13 ns, this does not mean that the P-Series meter and sensor combination can accurately measure a signal with a known rise time of 13 ns. The measured rise time is the root sum of the squares (RSS) of the signal under test rise time and the system rise time (13 ns):

Measured rise time = $\sqrt{((\text{signal under test rise time})^2 + (\text{system rise time})^2)}$, and the % error is:

% Error = ((measured rise time – signal under test rise time)/signal under test rise time) x 100

P-Series Power Meter Specifications

Meter uncertainty	
Instrumentation linearity	± 0.8 %
Timebase	
Timebase range	2 ns to 100 msec/div
Accuracy	±10 ppm
Jitter	≤ 1 ns
Zero Set	
Zero Set (CW)	0.0000175%
Zero Set (Peak)	0.015%
Trigger	
Internal trigger	
Range	-20 to +20 dBm
Resolution	0.1 dB
Level accuracy	$\pm 0.5 dB$
Latency ¹	160 ns ± 10
Jitter	≤ 5 ns rms
External TTL trigger input	
High	> 2.4 V
Low	< 0.7 V
Latency ²	$30 \text{ ns} \pm 10 \text{ ns}$
Impedance	50 Ω
Jitter	≤ 5 ns rms
Trigger delay	
Delay range	± 1.0 s, maximum
Delay resolution	1 % of delay setting, 10 ns maximum
Trigger hold-off	
Range	1 μs to 400 ms
Resolution	1 % of selected value (to a minimum of 10 ns)
Trigger level threshold hysteresis	
Range	± 3 dB
Resolution	0.05 dB

^{1.} Internal trigger latency is defined as the delay between the applied RF crossing the trigger level and the meter switching into the triggered state.

^{2.} External trigger latency is defined as the delay between the applied trigger crossing the trigger level and the meter switching into the triggered state.

^{3.} External trigger output latency is defined as the delay between the meter entering the triggered state and the output signal switching.

P-Series Wideband Power Sensor Specifications

The P-Series wideband power sensors are designed for use with the P-Series power meters only.

Sensor model				
N1921A	50 MHz to 18 GHz	-35 dBm to +20 dBm (≥ 500 MHz) -30 dBm to +20 dBm (50 MHz to 500 MHz)	+23 dBm (average power); +30 dBm (< 1 μs duration) (peak power)	Type N (m)
N1922A	50 MHz to 40 GHz	-35 dBm to +20 dBm (≥ 500 MHz) -30 dBm to +20 dBm (50 MHz to 500 MHz)	+23 dBm (average power); +30 dBm (< 1 μs duration) (peak power)	2.4 mm (m)

Maximum SWR

Frequency band	N1921A	N1922A
50 MHz to 10 GHz	1.2	1.2
10 GHz to 18 GHz	1.2	1.26
18 GHz to 26.5 GHz		1.3
26.5 GHz to 40 GHz		1.5

Sensor Calibration Uncertainty⁹

Definition: Uncertainty resulting from non-linearity in the sensor detection and correction process. This can be considered as a combination of traditional linearity, cal factor and temperature specifications and the uncertainty associated with the internal calibration process.

Frequency band	N1921A	N1922A
50 MHz to 10 GHz	4.5 %	4.3 %
500 MHz to 1 GHz	4.0 %	4.2 %
1 GHz to 10 GHz	4.0 %	4.4 %
10 GHz to 18 GHz	5.0 %	4.7 %
18 GHz to 26.5 GHz		5.9 %
26.5 GHz to 40 GHz		6.0 %

Physical characteristics					
Dimensions	N1921A	135 mm x 40 mm x 27 mm (5.3 in x 1.6 in x 1.1 in) 127 mm x 40 mm x 27 mm (5.0 in x 1.6 in x 1.1 in)			
Weights with cable	Option 105 Option 106 Option 107	0.4 kg (0.88 lb) 0.6 kg (1.32 lb) 1.4 kg (3.01 lb)			
Fixed sensor cable lengths	Option 105 Option 106 Option 107	1.5 m (5 feet) 3.0 m (10 feet) 10 m (31 feet)			

^{1.} Beyond 70% Humidity, an additional 0.6% should be added to these values.

1 mW Power Reference

Note: The 1 mW power reference is provided for calibration of E-Series, 8480 Series and N8480 Series sensors. The P-Series sensors are automatically calibrated and therefore do not need this reference for calibration

Power output 1.00 mW (0.0 dBm). Factory set to ± 0.4 % traceable to the National Physical Laboratory

Accuracy (over 2 years) ±1.2 % (0 to 55 °C)

 $\pm 0.4 \% (25 \pm 10 ^{\circ}C)$

Frequency 50 MHz nominal SWR 1.08 (0 to 55 °C)

1.05 typical

Connector type Type N (f), 50 Ω

Rear-panel inputs/outputs

Recorder output Analog 0-1 Volt, 1 k Ω output impedance, BNC connector. For dual-channel instruments there will

be two recorder outputs

GPIB, 10/100BaseT LAN and USB2.0 Interfaces allow communication with an external controller

Ground Binding post, accepts 4 mm plug or bare-wire connection

Trigger input Input has TTL compatible logic levels and uses a BNC connector

Trigger output Output provides TTL compatible logic levels and uses a BNC connector

Line power

Input voltage range 90 to 264 Vac, automatic selection

Input frequency range 47 to 63 Hz and 440 Hz

Power requirement N1911A not exceeding 50 VA (30 Watts)

N1912A not exceeding 75 VA (50 Watts)

Remote programming

Interface GPIB interface operates to IEEE 488.2 and IEC65

10/100BaseT LAN interface

USB 2.0 interface

Command language SCPI standard interface commands

GPIB compatibility SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP1, DC1, DT1, C0

Measurement speed

Measurement speed via remote

interface

≥ 1500 readings per second

Regulatory information

Electromagnetic compatibility Complies with the following requirements:

IEC 61326-1:2005/EN 61326-1:2006

CISPR11:2003/, EN 55011:1998+A1:1999+A2:2002 Group 1 Class A

Canada: ICES/NMB-001:Issue 4, June 2006 Australia/New Zealand: AS/NZS CISPR 11:2004

Product safety Conforms to the following product specifications:

IEC 61010-1:2010/EN 61010-1:2010 (3rd Edition)

Canada: CAN/CSA-C22.2 No. 61010-1-12

USA: ANSI/UL 61010-1:2012

1 mW Power Reference (continued)

Physical characteristics

Dimensions The following dimensions exclude front and rear panel protrusions:

88.5 mm H x 212.6 mm W x 348.3 mm D (3.5 in x 8.5 in x 13.7 in)

Command language N1911A $\leq 3.5 \text{ kg}$ (7.7 lb) approximate

N1912A ≤ 3.7 kg (8.1 lb) approximate

Shipping weight N1911A \leq 7.9 kg (17.4 lb) approximate

N1912A ≤ 8.0 kg (17.6 lb) approximate

Display 3.8 inch TFT Color LCD

Environmental conditions

General The following dimensions exclude front and rear panel protrusions:

88.5 mm H x 212.6 mm W x 348.3 mm D (3.5 in x 8.5 in x 13.7 in)

Operating

Temperature 0 °C to 55 °C

Maximum humidity 95 % at 40 °C (non-condensing)
Minimum humidity 15 % at 40 °C (non-condensing)
Maximum altitude 3,000 meters (9,840 feet)

Storage

Non-operating storage temperature -40 °C to +70 °C

Non-operating maximum humidity 90 % at 65 °C (non-condensing) Non-operating maximum altitude 15,420 meters (50,000 feet)

System specifications and characteristics

The video bandwidth in the meter can be set to High, Medium, Low and Off. The video bandwidths stated in the table below are not the 3 dB bandwidths, as the video bandwidths are corrected for optimal flatness (except the Off filter). Refer to Figure 2 for information on the flatness response. The Off video bandwidth setting provides the warranted rise time and fall time specification and is the recommended setting for minimizing overshoot on pulse signals.

Dynamic response - rise time, fall time, and overshoot versus video bandwidth settings						
	Video bandwidth s	setting				
Parameter					Off	
	Low: 5 MHz	Medium: 15 MHz	High: 30 MHz	< 500 MHz	> 500 MHz	
Rise time/fall time ¹	< 56 ns	< 25 ns	≤ 13 ns	< 36 ns	≤ 13 ns	
Overshoot ²				< 5 %	< 5 %	

For Option 107 (10 m cable), add 5 ns to the rise time and fall time specifications.

- 1. Specified as 10% to 90% for rise time and 90% to 10% for fall time on a 0 dBm pulse.
- 2. Specified as the overshoot r For Option 107 (10 m cable), add 5 ns to the rise time and fall time specifications. elative to the settled pulse top power.

Recorder output and video output

The recorder output is used to output the corresponding voltage for the measurement a user sets on the Upper/Lower window of the power meter.

The video output is the direct signal output detected by the sensor diode, with no correction applied. The video output provides a DC voltage portional to the measured input power through a BNC connector on the rear panel. The DC voltage can be displayed on an oscilloscope for time measurement. This option replaces the recorder output on the rear panel. The video output impedance is 50 ohm.

Characteristic Peak Flatness

The peak flatness is the flatness of a peak-to-average ratio measurement for various tone-separations for an equal magnitude two-tone RF input. Figure 2 refers to the relative error in peak-to-average ratio measurements as the tone separation is varied. The measurements were performed at -10 dBm with power sensors with 1.5 m cable lengths.

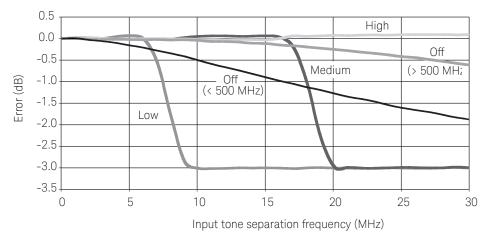


Figure 2. N192XA Error in peak-to-average measurements for a two-tone input (High, Medium, Low and Off filters)

Noise and drift Sensor model	Zeroing	Zero s	et			Zero dr	ift ¹	Noise samp	•		urement run) ²	noise
N1921A /N1922A	No RF on input RF present		500 MHz 200 550 nW			10	0 nW	Ź	? μW		50 nV	V
Measurement avera	age setting	1	2	4	8	16	32	64	128	256	512	1024
Free run noise multi	plier	1	0.9	0.8	0.7	0.6	0.5	0.45	0.4	0.3	0.25	0.2
Video BW setting				Low 5	MHz	Mediu	m 15 MHz	High	n 30 MHz		Off	
Noise per sample m	ultiplier		O MHz O MHz	0.5 0.45		1 0.75		2 1.1			1 1	

^{1.} Within 1 hour after a zero, at a constant temperature, after 24 hour warm-up of the power meter. This component can be disregarded with Auto-zero mode set to ON.

Effect of video bandwidth setting

The noise per sample is reduced by applying the meter video bandwidth filter setting (High, Medium or Low). If averaging is implemented, this will dominate any effect of changing the video bandwidth.

Effect of time-gating on measurement noise

The measurement noise on a time-gated measurement will depend on the time gate length. 100 averages are carried out every 1 us of gate length. The Noise-per-Sample contribution in this mode can approximately be reduced by √(gate length/10 ns) to a limit of 50 nW.

^{2.} Measured over a one-minute interval, at a constant temperature, two standard deviations, with averaging set to 1.

Appendix A

Uncertainty calculations for a power measurement (settled, average power)

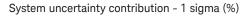
[Specification values from this document are in bold italic, values calculated on this page are <u>underlined</u>.]

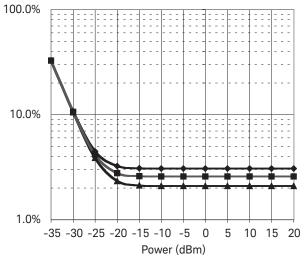
Process	
1. Power level:	W
2. Frequency:	
 3. Calculate meter uncertainty: Calculate noise contribution If in Free Run mode, Noise Moise = Noise-per-sample x noise per sample multiplier If in Trigger mode, Noise 	
Convert noise contribution to a relative term ¹ = Noise/Power	%
Instrumentation linearity	%
Drift	%
RSS of above three terms => Meter uncertainty =	%
4. Zero Uncertainty	
(Mode and frequency dependent) = Zero set/ <u>Power</u> =	%
	%
5. Sensor calibration uncertainty	
(Sensor, frequency, power and temperature dependent) =	%
6. <u>System contribution</u> , coverage factor of 2 => sys _{rss} =	%
7. Standard uncertainty of mismatch	
Max SWR (Frequency dependent) =	
convert to reflection coefficient, ρ_{Sensor} = (SWR-1)/(SWR+1) =	
Max DUT SWR (Frequency dependent) =	
convert to reflection coefficient, ρ_{DUT} = (SWR-1)/(SWR+1) =	
8. Combined measurement uncertainty @ k=1	
$U_{C} = \sqrt{\left(\frac{Max(\rho_{DUT}) \cdot Max(\rho_{Sensor})}{\sqrt{2}}\right)^{2} + \left(\frac{sys_{rss}}{2}\right)^{2}}$	%
Expanded uncertainty, $k = 2$, $= U_C \cdot 2 = \dots$	%

^{1.} The noise to power ratio is capped for powers > 100 uW, in these cases use: Noise/100 μ W.

Worked Example

Uncertainty calculations for a power measurement (settled, average power)

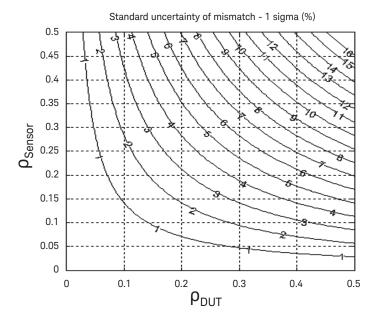

[Specification values from this document are in bold italic, values calculated on this page are <u>underlined</u>.]


Process	
1. Power level:	1mW
2. Frequency:	1GHz
3. Calculate meter uncertainty: Calculate noise contribution - If in Free Run mode, Noise = Measurement noise x free run multiplier = 50 - If in Trigger mode, Noise = Noise-per-sample x noise per sample multiplier	
Convert noise contribution to a relative term ¹ = $\underline{\text{Noise}}/\underline{\text{Power}}$ = 30 nW/100 μW	0.03%
Instrumentation linearity	0.8%
Drift	-
RSS of above three terms => <u>Meter uncertainty</u> =	0.8%
4. Zero Uncertainty	
(Mode and frequency dependent) = Zero set/Power = 300 nW/1 mW	0.03%
5. Sensor calibration uncertainty (Copper frequency payer and temperature dependent)	
(Sensor, frequency, power and temperature dependent) =	4.0%
6. System contribution, coverage factor of 2 => sys_{rss} =	4.08%
7. Standard uncertainty of mismatch	
Max SWR (Frequency dependent) =	1.25
convert to reflection coefficient, ρ_{Sensor} = (SWR-1)/(SWR+1) =	0.111
Max DUT SWR (Frequency dependent) =	1.26
convert to reflection coefficient, ρ_{DUT} = (SWR-1)/(SWR+1) =	2.23
8. Combined measurement uncertainty @ k=1	
	0.115
$J_{C} = \sqrt{\left(\frac{Max(\rho_{DUT}) \cdot Max(\rho_{Sensor})}{\sqrt{2}}\right)^{2} + \left(\frac{sys_{rss}}{2}\right)^{2}}$	
Expanded uncertainty, $k = 2$, $= U_C \cdot 2 = \dots$	±4.46%

^{1.} The noise to power ratio is capped for powers > 100 uW, in these cases use: Noise/100 μ W instead.

Graphical Example

A. System contribution to measurement uncertainty versus power level (equates to step 6 result/2)



M1921A: 500 MHz to 10 GM1922A:18 to 40 GHzOther bands

Note: This graph is valid for conditions of freerun operation, with a signal within the video bandwidth setting on the system. Humidity < 70%.

B. Standard uncertainty of mismatch.

SWR	ρ	SWR	ρ
1.0	0.00	1.8	0.29
1.05	0.02	1.90	0.31
1.10	0.05	2.00	0.33
1.15	0.07	2.10	0.35
1.20	0.09	2.20	0.38
1.25	0.11	2.30	0.39
1.30	0.13	2.40	0.41
1.35	0.15	2.50	0.43
1.40	0.17	2.60	0.44
1.45	0.18	2.70	0.46
1.5	0.20	2.80	0.47
1.6	0.23	2.90	0.49
1.7	0.26	3.00	0.50

Note: The above graph shows the standard uncertainty of mismatch = ρ DUT. ρ Sensor / \leftarrow 2, rather than the mismatch uncertainty limits. This term assumes that both the source and load have uniform magnitude and uniform phase probability distributions.

C. Combine A & B

Ordering Information

Model	Description	
N1911A	100 Msamples/sec,	
	continuous sampling	
N1912A	≥ 30 MHz	
Standard-shipped accessories		
Power cord		
USB cable Type	A to Mini-B, 6 ft	
Product CD-ROM (contains English		
and localized User's Guide and		
Programming G	luide)	
Keysight IO Libraries Suite CD-ROM		
Calibration certificate		
Warranty		
Standard 3-year, return-to-Keysight		
Standard 3-yea	ii, returii-to-keysiyiit	
-	ervice plan for the	
•	, ,	

accessories

Options	Description	
N191xA-003	P-Series single/dual-channel with rear panel sensors and power ref connectors	
N191xA-H01	P-Series single/dual-channel with video output	
Sensors		
N192xA-105	P-Series sensors fixed 1.5 m (5 ft) cable length	
N192xA-106	P-Series sensors fixed 3.0 m (10 ft) cable length	
N192xA-107	P-Series sensors fixed 10 m (31 ft) cable length	
Cables		
N1917A	P-Series meter cable adaptor, 1.5 m (5 ft)	
N1917B	P-Series meter cable adaptor, 3 m (10 ft)	
N1917C	P-Series meter cable adaptor, 10 m (31 ft)	
N1911A-200	11730x cable adaptor	
Other accessories		
34131A	Transit case for half-rack 2U-high instruments (e.g., 34401A	
34161A	Accessory pouch	
N191xA-908	Rack mount kit (one instrument)	
N191xA-909	Rack mount kit (two instruments)	
Warranty and calibration		
N191xA-1A7	ISO17025 calibration data including Z540 compliance	
N191xA-A6J	ANSI Z540 compliant calibration test data	
R-51B-001-Z	Return to Keysight Warranty - 3 years	
R-51B-001-5Z	Warranty Assurance Plan - Return to Keysight - 5 years	
R-50C-011-3	Calibration Assurance Plan - Return to Keysight - 3 years	
R-50C-011-5	Calibration Assurance Plan - Return to Keysight - 3 years	
R-50C-016-3	ISO 17025 Compliant Calibration up front - 3 years plan	
R-50C-016-5	ISO 17025 Compliant Calibration up front - 5 years plan	
R-50C-021-3	ANSI Z540-1-1994 Calibration up front - 3 years plan	
R-50C-021-5	ANSI Z540-1-1994 Calibration up front - 5 years plan	
Documentation		
N191xA-0B	Hard copy English language Programming Guide	
N191xA-0BK	Hard copy English language User's Guide and Programming Guide	
N191xA-0BW	Hard copy English language Service Guide	
N191xA-ABF	Hard copy French localization User's Guide and Programming Guide	
N191xA-ABJ	Hard copy Japanese localization User's Guide and Programming Guide	
N192xA-0B1	Hard copy P-Series sensor English language manual	

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

www.axiestandard.org

www.lxistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Keysight is a founding member of the LXI consortium.

www.pxisa.org

PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight's commitment to superior product quality and lower total cost of ownership. The only test and measurement company with three-year warranty standard on all instruments, worldwide.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure your instruments are operating to specification so you can rely on accurate measurements.

www.keysight.com/go/quality

Keysight Technologies, Inc. DEKRA Certified ISO 9001:2008 Quality Management System

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/powermeter

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	0800 0260637

For other unlisted countries: www.keysight.com/find/contactus (BP-09-23-14)

